© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

CHROM. 6520

Note

Separation and identification of certain xanthene and other red basic dyes

In the course of investigation of basic dyes as spectrophotometric reagents for the determination of anionic species it has become apparent that in certain cases the dye purity is a significant factor in the extent of anion extraction and in the overall reliability of procedures¹⁻⁴. Recent studies have been particularly concerned with xanthene dyes. It has been necessary to check the identity of materials, due to the large number of names in use for certain compounds¹ and because particular names are used for more than one compound⁵, and also to check the purity of samples of known structure. Many of the dyes examined are of histochemical interest⁵⁻⁸.

Materials and method

Chromatographic solvents. Mixtures were freshly prepared according to the following compositions: (1) ethanol-(0.88) ammonia-water (2:2:1); (2) ethanol-methanol (4:1)*; (3) isopropanol-(0.88) ammonia-water (10:1:1); (4) n-butanol-1.5 N ammonia (1:1); (5) glacial acctic acid-water (1:9); (6) glacial acetic acid-water (5:85); (7) glacial acetic acid-water (1:4); (8) I N hydrochloric acid; (9) (0.8 mnonia-ethanol-water (5:10:85).

Paper. Whatman No. 1 (25 \pm 25 cm) which was thoroughly predamped by a fine water spray when used in solvent 8 and impregnated with 5% cetyl alcohol in ethanol¹⁶ before use in solvent 1. In all other cases it was used as supplied. Sample spots were placed 3 cm from base and developed upwards for 15 cm (45–60 min). With acidic solvents spots were developed by exposure to ainmonia vapour.

Results

Useful results were only obtained with solvent systems 8 and 9 and these are given in Table I. R_F values were calculated by measuring to the leading edge of a spot; values for minor components are shown in parentheses. With solvent systems 2, 3 and 5 dyes travelled in the solvent front. With systems 1, 4, 6 and 7 only slight separations were achieved.

Discussion

The identity of samples of Basic Red 14 and of Basic Red 18 from two sources was confirmed as was that of three samples of Basic Violet 10. Rhodamine 3 B, Basic Violet 11, was found to be contaminated with Rhodamine B, Basic Violet 10. The predamping of the paper before use with solvent 8 was found to reduce tailing considerably. With Taylor's solvent 9, tailing was further reduced in most cases. This solvent was less satisfactory for our purposes in that it did not resolve ethyl and butyl rhodamines although the separation of Rhodamine 3B and Rhodamine B was better than that reported earlier by Horobin and Muffgatroyp. Solvent

TABLE I APPROXIMATE R_F VALUES

Trade name	Colour index ¹² name and number	Type	$R_{F}\ value$	
			Solvent 8	Solvent 9
Maxilon Red BL	Basic Red 22	a2 0	o.68 (c79)	c. µ
Maxilon Red GRL	Basic Red 46	monoazo	0.58 (0.64)	0.14 (0.33
Sevron Bordeaux G	Basic Red 10	triarylmethane	0.03 (0.09; 6.42)	0.84
Sevron B Red D	Basic Red to	xanthene	0.48	0.25
Sevron B Red B	Basic Red 15	methine	0.46	0.17
Sevron Red GL	Basic Red 18; 1108;	cyanine	0.32	0.11
Sevron B Red 4G	Basic Red 14	cvanine	0.31	0.16
Deorlene B Red R	Basic Red 27	methine	0.25	0.15
Deorlene B Red 3B	Basic Red 26	triarylmethane	0.81	0.68
Deorlene B Red 4G	Basic Red 14	evanine	0.31	0.16
Deorlene F Red 2GL	Basic Red 54	cyanine	0.33	0.11
Rhodamine S	Basic Red 11; 45050	succinein	0.32	0.23
Rhodamine oG	Basic Red 1; 45100	xanthene	0.45	0,29 (0.49
Rhodamine oGD	Basic Red 1; 45100	xanthene	0.44	0.20
Rhodamine 3B	Basic Violet 11; 45175	xanthene	0.50 (0.59)	0.28 (0.65
Rhodamine B	Basic Violet to; 45170	Nanthene	0.59	0.66
Rhodamine 3G	Basic Red 3; 45210	Nanthene	0.49	0.25 (0.5.
Butyl Rhodamine B	***	Nanthene	0.34	0.25

9 was used successfully, however, for the purification of Rhodamine 3B on a preparative scale using a celiulose column. Improved resolution in the Deorlene series of red dy 3¹¹ has also been achieved. It should be noted that for Deorlene Brilliant Red 3B (Basic Red 26) spots only appear slowly when the paper has almost dried (30 min).

Department of Chemistry, University of Technology, Loughborough, Leics. (Great Britain) A. G. Fogg A. Willox D. Thorburn Burns

- 1 A. G. Focc, C. Burgiss and D. Thorburn Burns, Talanta, 18 (1971) 1175.
- A. G. Fogg, J. Jillings, D. R. Marriott and D. Thorburn Burns, Analyst (London), 94
 (1969) 768.
- 3 A. G. Fogg, C. Burgess and D. Thorburn Burns, Analyst (London), 95 (1976) 1012.
- 4 A. G. Fogg, C. Burgess and D. Thorburn Burns, Analyst (London), que (q71) 85a.
- 5 A STAR AND W. SPECHT. Natura is an abatter 50 (1963) 549.
- 6 K. B. TAYLOR, Nation (London), 185 (1966), 243
- 7 T. SCHMIDT, Acta Historikem., 39 (1971) 230.
- 8 R. W. HOROBIN AND L. B. MURGARROYD, Stain Technol., 44 (1996) 297
- 9 C. H. A. KUYPERS, Dr. Tee, 23 (1964) 365.
- 10 J. CIGLAR, J. KOLŠEK AND M. PERPER, Chem. Zt.c., 86, 1902, 41.
- II S. LOGAR, J. PERKAVEC AND M. PERRING Milkonchair, Acta, 1907, 190.
- 12 Colono India, Society of Divers and Colourists, Bradford, 3rd ed., 1971

Received November 27th, 1972